
SMART CONTRACTS EXPERTISE —
RIGHT WAY TO SUCCESS
KosovaCoin audit report

If you have any questions concerning
smart contract design and audit, feel
free to contact audit@rocknblock.io

2rocknblock.io \ audit@rocknblock.io

1. Overview

1.1 Terms of Reference for the creation of a
smart contract

1.1.1 Token details

2. Introduction

2.1 Authenticity

2.2 Scope

2.3 Methodology

2.4 Description of the complex of procedures
for reviewing the smart contract

2.5 Risk Assessment

2.6 Disclaimer

3. Findings

3.1 Critical Severity

3.2 High Severity

3.3 Medium Severity

3.4 Low Severity

3.5 Notes and Recommendations

4. Manual testing

5. Documents and Resources

5.1 Source

5.2 References

6. Conclusion

Сontent

3

3

3

5

5

5

5

5

6

6

7

7

7

7

7

7

10

11

11

11

11

3rocknblock.io \ audit@rocknblock.io

KosovaCoin team asked us to perform a review of their BEP20 Token contract code.
We performed a review of their code from 13.08.2021- 17.08.2021, and published this
document as a write-up of our findings.

• Token Name - KosovaCoin

• Token Symbol - KS

• Decimals - 9

• Total Supply - 2,000,000,000,000,000 KS

• Token address - 0x13B4707164c5d77E2595Cf7421713842E62B5586

• Token Creator address - 0x3290458d69788302c7dcA753896F3c0A10952368

• Token Owner address - 0x20d66401b364CF3263bb476B3Ff6663d4Cd2Ea91

• Type of token - BEP20

1.1 Terms of Reference for the creation of a smart contract

1.1.1 Token details:

1. Overview

1.1.2 Token functions:

transfer The token contract allows the holder transfer tokens to a specific
address

Emits Transfer() event when tokens are transferred successfully
(include 0 amount transfers)

mint The token contract does not allows the owner or privileged users
to mint tokens to a specific address

mintandfreeze The token contract allows the owner or privileged users to mint
and freeze tokens to a specific address with indicate unfreeze
date

transferFrom Allows transfer tokens from the address that previously granted
the rights to this operation

Emits Transfer() event when tokens are transferred successfully
(include 0 amount transfers)

4rocknblock.io \ audit@rocknblock.io

burn The token contract allows to all holders burn their tokens

FreezeTo The token contract allows to all holders freeze their tokens to any
address and specifying unfreeze date

releaseAll Token owner can unfreeze tokens on all holders address if reached
unfreeze date.

releaseOnce Token holder can unfreeze tokens on his address if reached un-
freeze date

pause The token contract allows the owner pause the token transfers
and other operations

unpause The token contract allows the owner unpause the token transfers
and other operations

renounceOwnership The token contract allows the owner to renounce ownership. After
calling renounceOwnership no one can be owner of the contract

transferOwnership The token contract allows the owner transfer ownership to anoth-
er address

approve Allows token holders to transfer the right to manage the token on
your balance to a third-party address

increaseApproval Allows token holders to increase the amount of tokens, the right
to control which is transferred to a third-party address

decreaseApproval Allows token holders to decrease the amount of tokens, the right
to control which is transferred to a third-party address

5rocknblock.io \ audit@rocknblock.io

The contracts audited are a subset of the contracts compiled and deployed in the
blockchain.

https://bscscan.com/address/0x13B4707164c5d77E2595Cf7421713842E62B5586#code

The assessed KS token smart contract components were written in Solidity, and the
version used for this report is commit:

https://github.com/Rock-n-Block/AUDIT/blob/main/KS

https://github.com/Rock-n-Block/AUDIT/
commit/4e3dd61e4089739d2de4f9feed4c93562772e709

The audit reviewed contract source code from Bscscan. Contract were reviewed in the
context of the flattened file, which included a single solidity file. The review performed
did not assess any scripts, tests, or other non-Solidity files.

2.1. Authenticity

2.2. Scope

2. Introduction

This audit was performed as a comprehensive review of the codebase and takes into
consideration both the Solidity code, as well as the target platform: Binance Smart
Chain network. The Solidity was reviewed not just for common vulnerabilities and
antipatterns, but also for its parity with the intent of the deployer, for its efficiency,
and for the practices used during development.

2.3. Methodology

2.4. Description of the complex of procedures for reviewing the
smart contract

• Checking the architecture of the contract.

• The correctness of the code.

• Check for linearity, shortness, and self-documentation.

• Static verification and code analysis for validity and the presence of syntactic
errors.

2.4.1 Primary architecture review

• Checking the code of the smart contract for compliance with the requirements of
the customer code logic, writing algorithms, matching the initial constant values.

• Identification of potential vulnerabilities

2.4.2 Comparison of requirements and implementation

6rocknblock.io \ audit@rocknblock.io

Findings were categorized using a risk rating model based on the OWASP method.
Each vulnerability takes into consideration the impact and likelihood of exploitation,
as well as the relative ease with which the vulnerability is resolved; findings that
permeate throughout the codebase will require much more review and work to solve
and are rated higher as a result.

To standardize the evaluation, we define the following terminology based on OWASP
Risk Rating Methodology:

• Likelihood represents how likely a particular vulnerability is to be uncovered and
exploited in the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk;

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium
and low respectively. Severity is determined by likelihood and impact and can be
classified into four categories accordingly, i.e., Critical, High, Medium, Low shown in
following Table

2.5. Risk Assessment

Table: Vulnerability Severity Classification

Likelihood

im
p

a
c
t

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

This document reflects the understanding of security flaws and vulnerabilities as they
are known to Rock`n`Block, and as they relate to the reviewed project. This document
makes no statements on the viability of the project or the safety of its code. This audit
does not represent investment advice and should not be interpreted as such.

2.6. Disclaimer

• Control testing of the smart contract for compliance with specified customer
requirements.

• Running properties tests of the smart contract in the test net.

2.4.3 Testing according to the requirements

7rocknblock.io \ audit@rocknblock.io

No critical-severity vulnerabilities were found.

No high-severity vulnerabilities were found.

No medium-severity vulnerabilities were found.

3.1. Critical Severity

3.2. High Severity

3.3. Medium Severity

3. Findings

Disparity of expectation in release functions: Users use releaseOnce() and releaseAll()
to release their frozen tokens once the freeze period has elapsed. In the event a user
does not hold any frozen tokens eligible for release, the releaseOnce() function reverts
state changes. This is not the case for releaseAll(), which will simply do nothing. While
this does not pose a significant danger for users, we recommend the inconsistency be
addressed.

Overuse of public function visibility: The reviewed token contract is assembled using
a script which generates a file of constants with which the token contract will set its
initial values. Because each constant is marked public, Solidity implicitly creates a
publicly visible getter function with the same name. While using constants is generally
efficient, excessive use of public fields:

1. Makes a contract more expensive to deploy (longer bytecode)

2. Makes a contract more expensive to use, as each additional function selector
created by these implicit getters means more options to traverse at runtime.

Consider removing the word public from each constant unless absolutely necessary.
They will be set to the default, internal, meaning they will still be accessible internally
to the contract.

3.4. Low Severity

Important - improper input sanitization during key generation, and mixing of user
frozen token records:

The reviewed token contract inherits from FreezableToken.sol, an extension of the
BEP20 standard implementing token transfers that can transfer time-locked tokens.

3.5. Notes and Recommendations

8rocknblock.io \ audit@rocknblock.io

Users are able to use the function freezeTo(address, uint, uint64) to transfer tokens
to an address which cannot be transferred again until the specified time period has
elapsed.

Frozen tokens are saved in order of release date, for more efficient access; a user
must invoke releaseOnce() or releaseAll() to release their tokens once the period has
elapsed. Release dates are linked together through the generation of a unique key
using an internal key generator, toKey(address, uint). As the input parameters suggest,
the key is generated using the frozen token holder’s address, and the release date. The
purpose of this is to ensure that if frozen tokens are sent to a user multiple times with
the same release date, the keys generated will be the same each time.

Each generated key is linked to the next sequential release date of a user’s frozen
tokens in the chains mapping. The actual amount frozen for each release date is
located in the freezings mapping. Both take as input the generated key for a release
date. chains returns the next date in the sequence, while freezings returns the number
of tokens frozen at the given release date. To clarify: when a user is sent frozen tokens,
a key is generated in toKey using their address and the release date. The number of
frozen tokens is recorded under this key in freezings. If the user has tokens frozen at
a later release date than this latest batch, the chains mapping will point to the next
release date in the sequence, from which a new key can be calculated using toKey,
which will point to its own amount of frozen tokens and next sequential date if it
exists. The pattern repeats until chains[key] returns 0, at which point the contract
knows it has arrived at the end of the user’s frozen token sequence.

The security of each user’s frozen token holdings relies on each key generated as
being unique. If this were not the case, an attacker could craft an address and release
date combination whose generated key matched the key created by a different user
to store a record of their frozen tokens, allowing them to lay claim to tokens held
frozen by other people.

The key generation used is the crux of the problem: the key generated is 32 bytes
in size, the default size used by Solidity for most values. The components of the key
used, if the key is to remain unique, should add up to 32 bytes in size. On the surface,
this appears to be the case: an initial mask (4 bytes) is followed by the holder’s
address (20 7 bytes), followed by the release date, which is assumed to be 8 bytes in
size, completing the 32-byte key.

The toKey function, however, only assumes, but does not require, the provided release
date to be 8 bytes in size. Release dates can be given to the function as a default
32-byte value, as toKey does not check the size. In the case an attacker is able to
provide the function with a 32-byte value, the key generation method used no longer
produces unique keys. Instead, the additional bytes overlap with the token holder’s
address, allowing the attacker to generate release dates that act to completely
equate their address with any other address when fed through the key generator.
The resulting much later date chosen should impose a waiting period on the attacker,
but the release functions only compare the last 8 bytes of the release time with the
current time. This means an attacker would be able to access the rightful owner’s
frozen tokens as soon as they could, for any address and any release date.

9rocknblock.io \ audit@rocknblock.io

Improper input sanitization in toKey means that a developer writing or using these
contracts needs to remember, every time they use the key generator, to only pass 8
bytes of information into the key generator. In the reviewed code, the input size was
correctly altered from its default “32” to the secure “8” a total of 12 out of 12 times.
Given that 32-bytes is the default size, this presents a classic anti-pattern - requiring
that input sanitization (validating the input size) be performed external to the critical
function, rather than simply ensuring the critical function validates the input itself.

Compounding this risk is the structure of the chains mapping, which only maps
from keys to release dates, meaning that multiple users essentially “share” the same
mapping. As long as keys are unique, this does not pose a significant risk. However,
if an attacker is able to find values for which collisions are created, users sharing the
same mapping means the attacker is able to affect the holdings of a much larger
proportion of frozen token holders.

Our recommendation is as follows:

1. Do not rely on simple arithmetic operations to generate a unique key. Instead, keys
should be generated using keccak256, a secure hashing function.

2. Change the chains mapping to use separate address spaces for each user.

3. Instead of a mapping from bytes32 => uint64, the mapping should map from
address => bytes32 => uint64. A similar addition should be made to the freezings
mapping.

4. If the codebase relies on a key generator function like toKey, it should check that
the input parameters to key generation match the sizes it expects for safe key
generation. For example, if dates are only 8 bytes in length the input parameter
should read uint64, not uint; the latter defaults to uint256, which uses 32 bytes.

This issue was included as a note, as it does not provide an angle of attack in the
reviewed contracts: key generation is successfully handled in the reviewed code.
However, we strongly recommend considering and incorporating these changes prior
to release and use, and especially if source code of this contract are intended to be
used for future deployments.

Redundant modifier use in MintableToken: The modifier hasMintPermission is logically
equivalent to the onlyOwner permission. Consider removing and using onlyOwner in
all cases.

Unnecessary boolean return from public functions: In MintableToken.mint,
MintableToken.finishMinting, and FreezableMintableToken.mintAndFreeze, a boolean
is returned from the public function. However, logic in these functions dictates that if
execution should fail for any reason (insufficient permissions, invalid contract state,
etc), then each function will simply revert all state changes. As such, the boolean
return value serves to only ever return true; false is never returned. (As an aside, the
boolean return values from all BEP20 functions must still be included. While they are
just as redundant as their use in this function, the BEP20 standard requires they be
included. However, no such standard requires that mint, or any other listed functions,
returns true.

10rocknblock.io \ audit@rocknblock.io

4. Manual testing

4. Testings

4.1. Successful Deployment token in test net. Open link

4.2. Successful Check name, symbol, decimals.

4.3. Successful Owner of contracts sets correctly.

4.4. Successful Checking the distribution function of tokens. Tokens are distributed
correctly. Open link

4.5. Successful Transfer tokens from address to address. Open link

4.6. Successful The MINT function. Tokens are minted and sent to an address. Open
link

4.7. Successful The MintAndFreeze function. Tokens are minted, frozen and sent to
an address. Tokens are displayed on the address, but cannot be sent to another
address until they are unfrozen by the token holder after the unfreezing date.
Open link

4.8. Successful Pause. Token transfer function is disabled. No one can transfer to-
kens from address to address. Open link

4.9. Successful Transfer token function disabled. Transaction failed. Open link

4.10. Successful Unpause. Token transfer function is enabled. Any holder can trans-
fer tokens from address to address. Open link

4.11. Successful Transfer token function enabled. Transaction successful. Open link

4.12. Successful Burn. Burning tokens from management address. Open link

4.13. Successful Finalize. The mintable function is disabled. No more tokens can be
minted. Open link

4.14. Successful transferOwnership. Transfer of rights to manage the token. Open
link

https://testnet.bscscan.com/address/0x95D2FffeC89893B2FC1f928117f99617e2397B3D
https://testnet.bscscan.com/tx/0xc62e7de1b0e52176697c5dc38c512f3c3e2d5fa117beb895f2d5b1868a886616
https://testnet.bscscan.com/tx/0xc62e7de1b0e52176697c5dc38c512f3c3e2d5fa117beb895f2d5b1868a886616
https://testnet.bscscan.com/tx/0xab7cdd57418b9625e3841f27222b8b1f83a5fac6b0d6fa6c1905d3afccaa56bd
https://testnet.bscscan.com/tx/0xab7cdd57418b9625e3841f27222b8b1f83a5fac6b0d6fa6c1905d3afccaa56bd
https://testnet.bscscan.com/tx/0xdcf5fc1fb33e5576d5f39a76f26986607ec7d2cfa434dc827b3fa635edbd0e4f
https://testnet.bscscan.com/tx/0x79d0e2d6b81b76dbe0a43e087b15589b9845bad597bf9e6e33ae77529c0c4ab0
https://testnet.bscscan.com/tx/0x259dc36992e641cc129ec126335e2ce724765fc5deab8cf35672736d17dc04d4
https://testnet.bscscan.com/tx/0x5c2ad7042fc130006dc6f194ee026ce8ed677cfeeb89f62258e1fdcf7fe53f7b
https://testnet.bscscan.com/tx/0x0885aa376a33d93d1eeff25b351852d3b2499e0ecb96cdeda7ec2bb752711d32
https://testnet.bscscan.com/tx/0x1d726390085680f7c2179ab1b7bcc7acfc4980633e4028709d07af999418bfc4
https://testnet.bscscan.com/tx/0x40fd4e540f6c49dfe67805fe18f66e1130d91a57ce54f9ea1f065e215e0ddc0a
https://testnet.bscscan.com/tx/0x1b3a242a94cfd907e8f913dcdbe6b07b7a242bc9b74c919cd03352d06b391f2c
https://testnet.bscscan.com/tx/0x1b3a242a94cfd907e8f913dcdbe6b07b7a242bc9b74c919cd03352d06b391f2c

11rocknblock.io \ audit@rocknblock.io

5. Documents and Resources

6. Conclusion

5.1. Source

5.2. References

The used source code can be found in bscscan: https://bscscan.com/
address/0x13B4707164c5d77E2595Cf7421713842E62B5586#code

The original source code used can be found in the Rock`n`Block repository:

https://github.com/Rock-n-Block/AUDIT/blob/main/KS

https://github.com/Rock-n-Block/AUDIT/
commit/4e3dd61e4089739d2de4f9feed4c93562772e709

The information in this review is a list of recommendations on what needs to be
done to ensure the quality and security of the smart contract. The Rock`n`block
experts conducted the verification of the smart contract. Based on the results of the
reviewing and testing, it is established that the token smart contract complies with the
specifications specified in the terms of reference.

During the reviewing and testing of the contracts, critical errors and possible
vulnerabilities were not detected. Outside of the included notes, the code reviewed
was simple and clean. The formatting, naming, and other conventions used were fairly
regular, and the inheritance structure was well-organized, resulting in a codebase that
was easier to review.

For all questions regarding the review and testing of the smart contract, we
recommend contacting audit@rocknblock.io

OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_
Rating_Methodology

